
28 The Delphi Magazine Issue 42

Beating the System:
Animated Icons And Cursors, 2
by Dave Jewell

In last month’s Beating the System,
I presented the code for TAniIcon,

a class which descends from
TGraphic and implements the
low-level code needed to prise
apart an animated icon file (exten-
sion of .ANI), extract and ‘play’ the
various icon images contained
therein. This month, as promised,
we’re going to use TAniIcon as a
basis for creating some useful
Delphi components which make
use of animated cursors.

Firstly, one small word of warn-
ing. Last month’s TAniIcon class
has changed just a little: the Clear
method is now public and includes
more re-initialisation code than it
did last month, and I’ve also
tweaked the LoadFromStream rou-
tine. Therefore, please be sure to
use the code that’s included on
this month’s disk or else things
won’t compile properly. All the
code has been developed and
tested under Delphi 3.

A Beginner’s Guide
To Property Editors...
Later in this article we’ll develop a
couple of new components, both of
which make use of the TAniIcon
class, publishing an object of this
class as a property. However, this
implies that we need some way of
assigning to an object of TAniIcon
at design-time from the form
designer. You’ve probably realised
that I’m talking about the need for a
custom property editor capable of
manipulating TAniIcon properties.
Just in case you’ve never created a
property editor before, I’m going to
take this opportunity to explain the
basics along the way. If you
develop many Delphi components
of your own and have a need to reg-
ularly create custom property edi-
tors, I’d strongly suggest that you
get hold of one of the excellent
in-depth books that cover this
topic, such as Ray Lischner’s

Hidden Paths of Delphi 3. The
Inprise documentation is woefully
inadequate when we get into this
sort of area.

The simplest way of implement-
ing a property editor for TAniIcon is
to derive a new editor from the
existing TClassProperty class,
which you’ll find defined inside the
DSGNINTF.PAS file, assuming you’ve
got the VCL source code. The code
for my new property editor can be
found in Listing 1. As you can see,
the class name is TAniIcon
PropertyEditor. As is usual with the
Tools API, deriving a new property
editor is simply a matter of ‘filling
in the blanks’ by overriding the
methods which need to implement
behaviour that differs from that of
the ancestor class. In this case,
four different methods are
involved, and I’ll be dealing with
each of them in turn.

Firstly, there’s the GetAttributes
function. This tells Delphi (or more
specifically, Delphi’s Object
Inspector) what sort of property
editor it’s dealing with. In our case,
we want to emulate the behaviour
of the built-in picture editor, creat-
ing a modal dialog which allows the
user to select a new .ANI file from
those present on disk. For this
reason, we return a function result
comprising only the paDialog
attribute. This tells the
Object Inspector that edit-
ing this property will invoke

a modal dialog, and the Object
Inspector accordingly displays a
small button with an ellipsis (three
dots to thee and me...) when this
particular property is selected in
the Object Inspector.

The next method we need to
override is called GetValue. Again,
this method is invoked by the
Object Inspector. It’s called in
order to obtain a value string
which is displayed in the right
hand column of the Object Inspec-
tor to show the value which is cur-
rently assigned to the property.
Again, we want to emulate the
behaviour of existing TGraphic
descendants such as TIcon, so we
display the string (None) if the
underlying TAniIcon property isn’t
currently assigned to an animated
icon. If it is, then we display the
class name in parentheses: again,
this is for consistency with exist-
ing property editors.

In order to access the actual
property itself, we make use of
another method called GetOrd
Value. This returns the current
value of the property as a 32-bit
quantity. If this were a simple
scalar property such as an integer,
the 32-bit value would correspond
directly to the property value.
However, in the case of TAniIcon,
the property type is a distinct

➤ Figure 1: Here's the
standard Delphi
Picture Editor. This
Property Editor dialog
is implemented in the
file PICEDIT.PAS, one
of the 'secret' files
whose source code
Inprise choose not to
include along with the
rest of the VCL code.

February 1999 The Delphi Magazine 29

unit UCAniIconEdit;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ExtDlgs, ExtCtrls, StdCtrls, UCAniIcon,
DsgnIntf;

type
TAniIconEditorDialog = class(TForm)
OKButton: TButton;
CancelButton: TButton;
GroupBox1: TGroupBox;
ImagePanel: TPanel;
ImagePaintBox: TPaintBox;
Load: TButton;
Save: TButton;
Clear: TButton;
OpenDialog: TOpenPictureDialog;
SaveDialog: TSavePictureDialog;
Timer1: TTimer;
procedure ClearClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure LoadClick(Sender: TObject);
procedure SaveClick(Sender: TObject);
procedure Timer1Timer(Sender: TObject);

private
Icon: TAniIcon;

public
procedure Reset;

end;
TAniIconPropertyEditor = class (TClassProperty)
public
function GetValue: String; override;
function GetAttributes: TPropertyAttributes; override;
procedure SetValue (const Value: string); override;
procedure Edit; override;

end;
implementation
{$R *.DFM}
procedure TAniIconEditorDialog.FormCreate(Sender: TObject);
begin
Icon := TAniIcon.Create;
Save.Enabled := False;

end;
procedure TAniIconEditorDialog.FormDestroy(Sender: TObject);
begin
Icon.Free;

end;
procedure TAniIconEditorDialog.ClearClick (Sender: TObject);
begin
Timer1.Enabled := False;
Save.Enabled := False;
Clear.Enabled := False;
Icon.Clear;
ImagePaintBox.Invalidate;

end;
procedure TAniIconEditorDialog.LoadClick (Sender: TObject);
begin
if OpenDialog.Execute then begin
Icon.LoadFromFile (OpenDialog.Filename);
Reset;

end;

end;
procedure TAniIconEditorDialog.Reset;
begin
Icon.BackgroundColor := ImagePaintBox.Color;
ImagePaintBox.Invalidate;
Save.Enabled := not Icon.Empty;
Clear.Enabled := not Icon.Empty;
Timer1.Enabled := not Icon.Empty;

end;
procedure TAniIconEditorDialog.SaveClick(Sender: TObject);
begin
if (Icon.Empty = False) and SaveDialog.Execute then
Icon.SaveToFile (SaveDialog.Filename);

end;
procedure TAniIconEditorDialog.Timer1Timer(Sender: TObject);
var r: TRect;
begin
if not Icon.Empty then begin
Icon.Animate;
r := Rect(0, 0, Icon.Width, Icon.Height);
OffsetRect(r, (ImagePaintBox.Width - Icon.Width) div 2,
(ImagePaintBox.Height - Icon.Height) div 2);

Icon.Draw (ImagePaintBox.Canvas, r);
end;

end;
function TAniIconPropertyEditor.GetValue: String;
var Icon: TAniIcon;
begin
Icon := TAniIcon (GetOrdValue);
if Icon.Empty then
Result := '(None)'

else
Result := '(' + Icon.ClassName + ')';

end;
function TAniIconPropertyEditor.GetAttributes:
TPropertyAttributes;

begin
Result := [paDialog];

end;
procedure TAniIconPropertyEditor.SetValue(
const Value: string);

begin
if Value = '' then SetOrdValue (0);

end;
procedure TAniIconPropertyEditor.Edit;
begin
with TAniIconEditorDialog.Create (Nil) do
try
Icon.Assign (TAniIcon (GetOrdValue)); Reset;
if ShowModal = mrOK then
TAniIcon (GetOrdValue).Assign(Icon);

finally
Free;

end;
end;
initialization
RegisterPropertyEditor (TypeInfo (TAniIcon), Nil, '',
TAniIconPropertyEditor);

end.

Delphi class, and in such situa-
tions, the value returned by
GetOrdValue is an actual object
instance of the given type which
we have to cast to TAniIcon before
use.

The third method we need to
override is SetValue. Again, I’ve
done this for consistency with
existing property editors. The
SetValue method performs the
reverse job to GetValue: given a
user-supplied string, it converts
this string into a property value
that ‘makes sense’ for this type of
property. To see how this works,
fire up Delphi, create a new form,
and set the form’s Icon property to
any old icon file that you have lying
around. If you then click inside the

value column of the Icon property
(within the Object Inspector) and
manually set the value of Icon to an
empty string, you’ll see that this is
interpreted as a clear operation,
resetting the property to (None).
The reason this works is because
Delphi’s built-in picture property
overrides the SetValue method in
exactly the same way that I’ve done
here.

Last, but definitely not least, is
the Edit method. This is where the
rubber hits the road, because the
Edit method is what gets called
when the aforementioned ellipsis
button is clicked to invoke the
property editor itself. As you can
see from the code listing, my Edit
method works by making use of the
TAniIconEditorDialog class, also
defined within the same unit, the

end result being shown in Figure 2.
If this property editor looks
strangely familiar to you, it’s prob-
ably because I... err... recycled the
form resource that’s used by
Delphi’s built-in picture editor. If
you wanted to get fancy, you could
(for example) make this form a
little larger and add a couple of
TLabel components to display the
animated icon’s Author and Title
properties as described last
month.

The TAniIconEditDialog form is
pretty standard stuff: the form con-
tains a panel component, within
which is a TPaintBox. The Canvas
property of the paintbox is used to
render the currently selected ani-
mation much like the example
code that I showed you at the end
of last month’s article. The form

➤ Listing 1

30 The Delphi Magazine Issue 42

includes a TTimer component
whose Interval property is set to
50 (again, as per last month’s dis-
cussion on playback speeds) and
this is used to trigger the
Timer1Timer method which calls
the TAniIcon object’s Animate
method to advance the animation,
and then draws the current ‘frame’
at the centre of the paintbox
control.

The private TAniIcon object is
created in the form’s OnCreate han-
dler, and destroyed in the form’s
OnDestroy handler. The event han-
dlers for the three buttons (Load,
Save and Clear) is likewise very
straightforward and pretty much
self-explanatory, using the Load
FromFile, SaveToFile and Clear
methods of the TAniIcon object to
do all the real work. If you want to,
you can use the Load and Save but-
tons to create copies of existing
.ANI files.

Returning to the TAniIcon-
PropertyEditor.Edit method, you
can see that it works by first creat-
ing the editor form, then assigning
to the private Icon object accord-
ing to the object instance data
returned from GetOrdValue. The
reverse process takes place when
the form is dismissed, assuming
that the OK button was pressed.
The only other thing in Listing 1
which is worthy of note is the call
to Register PropertyEditor in the
unit’s initialization clause. This

causes the Delphi IDE to associate
our new property editor with the
TAniIcon class, causing it to be
invoked whenever the Object
Inspector is used to perform
design-time modification of the
class. Magic!

At this point, the rest is relatively
plain-sailing. We’ve now got a class
which encapsulates the animated
icon file format, and we’ve got a
cute property editor with which to
massage properties of that class.
With the code modules I’ve dis-
cussed so far installed into the
Delphi IDE, you’ll find that it’s easy
to create a new component, add a
published property of type
TAniIcon and then edit it to your
heart’s content. The critically
important behaviour, of course, is
that when such a component is
streamed out to a .DFM file, the cur-
rently loaded icon data gets
streamed into the .DFM file as well.
This means that you can distribute
applications that make use of ani-
mated icons without having to
deploy a set of associated .ANI files
and without having to muck
around with resource data. To put
it more succinctly, you can do
things ‘the Delphi way’. Figure 3
shows Merlin’s Resource Explorer
peeking at the Icon property of just
such a component (of type
TUCAniTrayIcon).

A Window, A Window,
My Kingdom For A Window...
TUCAniTrayIcon? What’s that then?
Well, one of the rash promises I
made last month was to develop a
Delphi component that could dis-
play animated icons on the ‘tray’
area of the Explorer taskbar.
You’ve probably
seen several Delphi
components that
can put static icons
onto the tray area,
but I thought I’d try
and improve on
that.

The complete
source code for
TUCAniTrayIcon is
given in Listing 2.
As you can see, this
is a non-visual
Delphi component

which derives from TComponent,
because none of the drawing stuff
takes place on the form itself, only
in the Windows tray area. The con-
trol implements six properties, the
most pertinent of which is Icon,
enabling us to set up an icon
animation using our shiny new
property editor. The Hintproperty
(not to be confused with the famil-
iar Hint property used by visual
Delphi components) is the hint
string that appears when the
mouse cursor is held over the tray
icon for any length of time. The
Animateproperty controls whether
or not the icon is animating and the
Visible property determines
whether the icon is visible on the
tray. Finally, the OnLeftClick and
OnRightClick events provide a
couple of simple event handlers
through which the application can
be notified when the left or right
mouse button has been clicked on
the tray icon. Please bear in mind
that this isn’t meant to be a presen-
tation of the quintessential tray
icon component: many tray icon
components implement up and
down handlers for each of the
three mouse buttons, plus a mouse
event handler plus... well, you get
the idea. The emphasis here is
simply on how to integrate our ani-
mated icon class into a tray icon
component, not how to provide

➤ Figure 2: And here's my
replacement for the standard
Picture Editor. This version,
of course, is specific to
TAniIcon property types and
the currently selected .ANI file
can be seen animating in the
centre of the preview area.

➤ Figure 3: This screenshot
illustrates how the animated
icon data contained within a
TAniIcon property is streamed
out as part of the .DFM form
file. Look carefully, you'll see
the RIFF' file signature which
I mentioned last month.

32 The Delphi Magazine Issue 42

more functionality than you’re
ever likely to need.

That said, an interesting
problem in the design of any tray
icon component concerns the
window handle that we’re going to
use to receive messages. As you
may appreciate from reading the
SDK documentation on Shell_
NotifyIcon, it’s necessary to pro-
vide the shell with the handle of a
window that will receive messages

when the mouse is clicked and
moved over the tray icon. Since
this is a non-visual, non-windowed
component (and rightly so) it does
not have an API-level window
handle of its own. So what window
handle can we use? If we elected to
use the window handle of the
parent form, then we’d have to
sub-class the form in order to
receive the messages posted to it.
This would lead to all sorts of
unpleasant code and would
necessitate additional care in

cleaning up when a component
instance is removed, ensuring that
there’s only one instance of
TUCAniTrayIcon on a form, and so
forth. This is definitely not the way
to go. Another solution would be
to derive TUCAniTrayIcon from a
windowed ancestor such as
TWinControl, but again this is
messy and leads to all sorts of
complications.

A good tip here is to look at the
way in which the TTimer control
has been implemented. The

unit UCAniTrayIcon;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, UCAniIcon;

const
UCTrayCallBack = $89AB;

type
TUCAniTrayIcon = class (TComponent)
private
fHint: String;
fWindowHandle: hWnd;
fVisible: Boolean;
fAniIcon: TAniIcon;
fOnLeftClick: TNotifyEvent;
fOnRightClick: TNotifyEvent;
fExclusionLock: Boolean;
fAnimate: Boolean;
procedure SetHint (const Value: String);
procedure SetVisible (Value: Boolean);
procedure SetAniIcon (Value: TAniIcon);
procedure UpdateTray (Visible: Boolean);
procedure SetAnimate (Value: Boolean);
procedure WndProc (var Message: TMessage);
procedure TrayMessage (var Message: TMessage);

protected
procedure Loaded; override;

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;

published
property Icon: TAniIcon read fAniIcon write SetAniIcon;
property Hint: String read fHint write SetHint;
property Animate: Boolean read fAnimate
write SetAnimate default False;

property Visible: Boolean read fVisible
write SetVisible default False;

property OnLeftClick: TNotifyEvent read fOnLeftClick
write fOnLeftClick;

property OnRightClick: TNotifyEvent read fOnRightClick
write fOnRightClick;

end;
procedure Register;
implementation
uses ShellAPI;
constructor TUCAniTrayIcon.Create (AOwner: TComponent);
begin
Inherited Create (AOwner);
fWindowHandle := AllocateHWnd (WndProc);
fAniIcon := TAniIcon.Create;

end;
procedure TUCAniTrayIcon.Loaded;
begin
Inherited Loaded;
UpdateTray (fVisible);

end;
destructor TUCAniTrayIcon.Destroy;
begin
SetAnimate (False);
SetVisible (False);
DeallocateHWnd (fWindowHandle);
fAniIcon.Free;
Inherited Destroy;

end;
procedure TUCAniTrayIcon.SetHint (const Value: String);
begin
if fHint <> Value then begin
fHint := Value;
UpdateTray (fVisible);

end;
end;
procedure TUCAniTrayIcon.TrayMessage(var Message: TMessage);
begin
if not fExclusionLock then begin
fExclusionLock := True;

case Message.lParam of
wm_LButtonDown : if Assigned(fOnLeftClick) then
fOnLeftClick (Self);

wm_RButtonDown : if Assigned(fOnRightClick) then
fOnRightClick (Self);

end;
fExclusionLock := False;

end;
end;
procedure TUCAniTrayIcon.WndProc (var Message: TMessage);
begin
with Message do if Msg = UCTrayCallBack then
try
TrayMessage (Message);

except
Application.HandleException (Self);

end
else if (Msg = wm_Timer) and (fAniIcon.Empty = False)
and fVisible then begin
fAniIcon.Animate;
UpdateTray (fVisible);

end else
Result :=
DefWindowProc(fWindowHandle,Msg,wParam,lParam);

end;
procedure TUCAniTrayIcon.SetAniIcon (Value: TAniIcon);
begin
fAniIcon.Assign (Value);
UpdateTray (fVisible);

end;
procedure TUCAniTrayIcon.SetVisible (Value: Boolean);
begin
if fVisible <> Value then
UpdateTray (Value);

fVisible := Value;
end;
procedure TUCAniTrayIcon.SetAnimate (Value: Boolean);
begin
if (fAnimate <> Value) then begin
fAnimate := Value;
if fAnimate then
SetTimer (fWindowHandle, 1, 50, Nil)

else
KillTimer (fWindowHandle, 1);

end;
end;
procedure TUCAniTrayIcon.UpdateTray (Visible: Boolean);
var
Msg: DWord;
tid: TNotifyIconData;

begin
if not (csDesigning in ComponentState) then begin
tid.cbSize := sizeof (tid);
tid.Wnd := fWindowHandle;
tid.uID := 0;
tid.uFlags := nif_Message + nif_Icon + nif_Tip;
tid.uCallbackMessage := UCTrayCallBack;
if fAniIcon.Empty then
tid.hIcon := Application.Icon.Handle

else
tid.hIcon := fAniIcon.Icon;

StrPCopy (tid.szTip, fHint);
if Visible <> fVisible then begin
if Visible then Msg := nim_Add
else Msg := nim_Delete;

end else
Msg := nim_Modify;

Shell_NotifyIcon (Msg, @tid);
end;

end;
procedure Register;
begin
RegisterComponents ('UnCommon', [TUCAniTrayIcon]);

end;
end.

➤ Listing 2

34 The Delphi Magazine Issue 42

humble timer control requires a
window in order to receive
WM_TIMER messages, but it has the
same problem, which window do
we send the messages to? The
timer component gets around this
by using the deeply cunning
AllocateHWnd routine which is actu-
ally defined inside the Forms unit.
This routine takes a single argu-
ment, the address of a method, and
it creates a new, hidden, window,
setting up things such that the
window procedure of the window
equates to the specified method.
As you can see, I call AllocateHWnd
in the constructor of TUCAni
TrayIcon, and this gives me a
window handle, fWindowHandle, to
which messages can be sent from
the shell. To reverse the process,
be sure to call DeallocateHWnd in
the component’s destructor.

OK, we’ve got a window handle;
what next? The core of the compo-
nent is the UpdateTray method.
This is called in two circum-
stances: firstly, when we want to
make the tray icon either visible or
invisible, and secondly whenever
we want to change some attribute
of the icon such as the hint string,
or the actual icon image that’s dis-
played. From this, you’ll appreci-
ate that the UpdateTray code will be
called repeatedly in order to dis-
play successive frames of the
animation in the tray area.

UpdateTray works by setting up a
small data structure of type
TNotifyIconData, passing it to the
Shell via the call to Shell_
NotifyIcon. Part of the passed
information includes the handle of
the window we created to receive
shell notifications, and UCTray
CallBack, a custom notification
message we’ve defined. I’ve writ-
ten the UpdateTray code in such a
way that it’ll do nothing at
design-time (the csDesigning bit
set in ComponentState). In theory,
you could add icons to the tray at
design-time, and even have a tray
icon animating while working in
Delphi’s form designer, but I con-
sidered this to be rather confusing
because, when you execute the
program from the IDE, you actually
end up with two icons on the tray,
one belonging to the running

program and one belonging to the
TUCAniTrayIcon instance sat on the
form designer! Perhaps there’s a
simple solution to this problem,
but it’s just past Christmas, there’s
still far too much brandy butter in
my bloodstream, and I can’t think
of one!

The WndProc method is particu-
larly important, it’s the address of
this method that was passed to the
AllocateHWnd routine I discussed
earlier. Whenever a UCTrayCallBack
message is received from the shell,
the TrayMessagemethod is called to
handle it. If you look at the
TrayMessage code, you’ll see that
I’ve implemented a simple exclu-
sion lock within this routine.
Essentially, it’s just a simple ‘busy
flag’ which ensures that if the shell
is currently calling one of the two
assigned event handlers, any sub-
sequent UCTrayCallBack messages
will be politely ignored. Why is this
important? Well, suppose you
arranged for a configuration dialog
box to appear when the user
clicked the right hand mouse
button on the tray icon. Without
the exclusion lock, clicking the tray
icon five times would bring up five
copies of the same dialog, which
probably isn’t what you wanted to
happen.

This leaves the question of how
to ‘drive’ the icon animation. One
solution would be to create a
TTimer component within the con-
structor of TUCAniTrayIcon and use
this to keep the animation running.
However, as I’ve already explained,
the TTimer component creates a
hidden window of its own in order
to receive WM_TIMER messages.
Wouldn’t it be much more efficient
if we could simply make use of the
existing window that we’ve already
got? It turns out to be quite easy to
do this through an API-level rou-
tine called SetTimer. Just pass it the
handle of an existing window, a
timer ID (it’s possible to associate
multiple timers with a single
window) an interval count and off
you go. Similarly, you use the
KillTimer routine to destroy the
existing timer when the Animate
property is set to False.

Thus, you’ll appreciate that I’m
really using our hidden window to

kill two birds with one stone: it’s
not only receiving tray notification
messages from the Shell, but it’s
also receiving WM_TIMER messages
which keep the animation going.
As you’ll see (back in the WndProc
method), whenever a timer mes-
sage is received, I check if an ani-
mated icon is assigned to fAniIcon,
check if the icon is visible on the
tray and, if so, execute last
month’s Animate method before
calling UpdateTray to write a (possi-
bly) new frame to the tray area.

There’s really not much more to
say about TUCAniTrayIcon, the
remaining methods are relatively
trivial and self-explanatory. One
thing that I wouldn’t advise you to
do is repeat my mistake. Out of
curiosity I added this line of code
immediately after the call to
fAniIcon.Animate:

Application.Icon.Handle :=
fAniIcon.Icon;

At design-time, this will work for a
while, animating the Delphi IDE’s
own icon, and causing even the
icon displayed in the top-left
corner of Delphi’s form designer
window to start animating! How-
ever, a GPF results as soon as you
try to run the program, and I’m not
too sure why. If you want to ani-
mate the application icon of your
program, you’d be better advised
to experiment with doing it inside
the UpdateTray method, thus
ensuring that it only happens at
runtime. This is an avenue that I
haven’t explored.

Cursor Craziness!
Listing 3 contains the source code
for TUCAnimatedIcon, the final piece
in our animated icon jigsaw puzzle.
As before, this is a Delphi control
which makes use of TAniIcon. This
time, however, it’s a visual compo-
nent which writes directly to its
own canvas. You’d typically use
this control to draw an animated
icon on a form. Because it doesn’t
have to allocate a hidden window
or communicate with the Windows
shell, it’s a very much simpler
affair than TUCAniTrayIcon. This
component isn’t without its rough
edges, and you’ll have your own

February 1999 The Delphi Magazine 35

ideas about what ancestor class
you want to inherit from (fancy a
TBitBtnwith an animated graphic?)
but it should serve as a starting
point for your own explorations.

Finally, before leaving the sub-
ject of animated icons, let me men-
tion one more bit of programming
magic that can be performed with
them.

If you examine the source for
TAniIcon, you will see that I’ve
added a new method, Set
AnimatedCursor, which wasn’t pres-
ent in last month’s code. The
source code to this method is
given in Listing 4. This method
takes the raw data from a .ANI file,
writes it to a temporary file, and
then uses the API LoadImage routine
to reload the data as an animated
cursor, writing the animated
cursor handle to the TScreen
object’s Cursorshandle in the usual
way. Perhaps you think this is a
little counter-intuitive but remem-
ber that (as far as Windows
Explorer is concerned) .ANI files
are really ‘Animated Cursor Files’.
I’ve taken pains to refer to .ANI files
as ‘animated icons’ throughout

these two articles simply to high-
light the fact that my code has
picked apart the .ANI format in
order to get at the individual icon
frames, but strictly speaking,
Microsoft designed the .ANI file

format in order to implement ani-
mated cursors. Consequently, no
discussion of animated icons and
cursors would be complete with-
out me showing you how to do this
under Delphi.

unit UCAnimatedIcon;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, UCAniIcon;

type
TUCAnimatedIcon = class(TCustomControl)
private
fIcon: TAniIcon;
fAnimate: Boolean;
procedure SetIcon (Value: TAniIcon);
procedure SetAnimate (Value: Boolean);
procedure TimerTick(var Msg:TMessage); message wm_Timer;

protected
procedure Paint; override;

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;

published
property OnEnter;
property OnExit;
property OnKeyDown;
property OnKeyPress;
property OnKeyUp;
property TabOrder;
property TabStop;
property Visible;
property Color;
property ParentColor;
property Hint;
property Icon: TAniIcon read fIcon write SetIcon;
property Animate: Boolean read fAnimate
write SetAnimate default False;

end;
procedure Register;
implementation
constructor TUCAnimatedIcon.Create (AOwner: TComponent);
begin
Inherited Create (AOwner);
fIcon := TAniIcon.Create;
Width := GetSystemMetrics (sm_cxIcon);
Height := GetSystemMetrics (sm_cyIcon);

end;
destructor TUCAnimatedIcon.Destroy;

begin
fIcon.Free;
Inherited Destroy;

end;
procedure TUCAnimatedIcon.SetIcon (Value: TAniIcon);
begin
fIcon.Assign (Value);
fIcon.BackgroundColor := Color;

end;
procedure TUCAnimatedIcon.SetAnimate (Value: Boolean);
begin
fAnimate := Value;
if fAnimate then
SetTimer (Handle, 1, 50, Nil)

else
KillTimer (Handle, 1);

end;
procedure TUCAnimatedIcon.Paint;
var R: TRect;
begin
if (not fAnimate) and (not fIcon.Empty) then begin
R := Rect (0, 0, fIcon.Width, fIcon.Height);
OffsetRect(R, (Width-fIcon.Width) div 2,
(Height-fIcon.Height) div 2);

fIcon.Draw (Canvas, R);
end;

end;
procedure TUCAnimatedIcon.TimerTick (var Msg: TMessage);
var R: TRect;
begin
if not fIcon.Empty then begin
fIcon.Animate;
R := Rect (0, 0, fIcon.Width, fIcon.Height);
OffsetRect (R, (Width-fIcon.Width) div 2,
(Height-fIcon.Height) div 2);

fIcon.Draw (Canvas, R);
end;

end;
procedure Register;
begin
RegisterComponents('UnCommon', [TUCAnimatedIcon]);

end;
end.

➤ Listing 3

UCAniIcon TGraphic derived class to implement core functionality

UCAniIconEdit Property editor for UCAniIcon

UCAniTrayIcon Non-visible component for tray icon animations

UCAnimatedIcon Visible component to add icon animations to forms

➤ Table 1

➤ Below: Listing 5➤ Above: Listing 4

procedure TAniIcon.SetAnimatedCursor (Index: Integer);
var TempFileName: String;
begin
if not Empty then begin
TempFileName := FormatDateTime ('__$$hhnnss$$__', Now);
SaveToFile(TempFileName);
try
Screen.Cursors[Index] := LoadImage (0, PChar(TempFileName),
Image_Cursor, 0, 0, lr_LoadFromFile);

finally
DeleteFile (TempFileName);

end;
end;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin
Screen.Cursors [1000] := LoadImage(0, 'c:\windows\cursors\m_busy.ani',
Image_Cursor, 0, 0, lr_LoadFromFile);

Cursor := 1000;
end;

36 The Delphi Magazine Issue 42

The above method is really just a convenience for
those who are already using my TAniIcon class within
their program, either to perform some visual anima-
tion on a form, or perhaps to animate a tray icon. How-
ever, if you simply wish to have an animated cursor and
you’re not interested in any of the TAniIcon functional-
ity, then you can get away with something as simple as
Listing 5.

This code uses the ‘mouse meets cheese’ .ANI file to
create an animated cursor that’s used to replace the
regular form’s cursor. More typically, you’d set up spe-
cialised animated cursors for one or more components
on the form, rather than the form itself.

Included on this month’s disk is a Delphi 3 package
called ANIICON.DPL. This package contains the four files
which are shown in Table 1. The finished .DPL package
is around 36Kb, although if you were building a com-
mercial application with this code, you’d be better
advised to link everything into your EXE file.

Well, that’s it, and I hope you’ve enjoyed this foray
into guts of the .ANI file format!

Dave Jewell is a freelance consultant, programmer
and technical journalist specialising in system-level
Windows and DOS work. He is the Technical Editor of
Developers Review which is also published by iTec.
You can contact Dave as Dave@HexManiac.com

	A Beginner’s Guide To Property Editors...
	A Window, A Window, My Kingdom For A Window...
	Cursor Craziness!

